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ABSTRACT

The influence of multipole interactions on exchanges of rotational

energy in molecular collisions is'investigated by means of a simple two-

state impact-parameter approximation. The calculations are restricted to

linear molecules and to dipole and quadrupole-fields. The effects of such

exchanges on the thermal conductivity of- gases and~of gaseous mixtures is

investigated in some detail, after" correcting"the kinetic theory of mix-

tures to include exchanges'between unlike molecules. We find that dipole-

quadrupole and quadrupoleTquadrupole-'interactions can have a significant

effect for molecules with'low momentsnof "inertia. In particular, quad-

rupole interactions are important in the-hydrogen"isotopes, and the cal-

culated corrections for H- are consistent with recent experimental work by

Harris. The theory seems capable of accounting for the anomalies observed

by Baker and Brokaw in HF + DF and HC1 + DC1 mixtures in terms'" of multi-

polar "accidental" resonances.



I. INTRODUCTION

It has been known for many years that a number of polar gases have thermal

conductivities anomalously low in comparison to their viscosities, the anomaly

increasing with the polarity. Mason and Monchick suggested that this was due to

an exchange of rotational energy between'two molecules during a distant encounter,

whereby a glancing collision was transformed into-a nearly head-on collision as

far as the transport of rotational energy was concerned. Their calculation was

limited to the case of exact resonance and long-range dipole forces, for which a

simple impact-parameter approximation was possible. This resonant dipole exchange

appeared to account for most of the anomaly.

2 3Baker and Brokaw ' suggested an ingenious experimental test of the pro-

posed mechanism: comparison of the thermal conductivity of a polar gas with that

of its deuterated isotope (e.g., HC1 and DC1) „ The masses and nearly all other

relevant molecular parameters are. equal for such molecules, except for the moments

of inertia which differ by approximately a factor of two. For the pure isotopic

gases the results seemed to substantiate' the Mason-Monchick mechanism, but the

results on an equimolar mixture of a polar gas and its deuterated isotope seemed

too low, if resonant exchanges were neglected between molecules with different

moments of inertia,, Baker and Brokaw pointed out, however, that "accidental"

resonances (actually near resonances) could occur in collisions between molecules

like HC1 and DC1 where the moments of inertia differ by a factor of nearly two.

An approximate calculation of this accidental resonance effect seemed to account

for the results on HC1-DC1 mixtures'and was later applied to HF-DF mixtures.

However, the calculation was rather intuitive, leaving the matter not settled
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satisfactorily*

In this paper, we reconsider resonant exchange collisions between linear

molecules with dipolar and quadrupolar"force fields and the effects of such ex-

changes on heat transport in gases. Since"what is desirable in an exploratory

investigation of this sort is. to locate and describe .the gross features of the

processes, some rather rough approximations"have been made in the resonant ex-

change cross sections, i.e0, rigour has been sacrificed for simplicity and

universality,, In essence, the cross-section calculation is based on a two-state

impact-parameter approximation, the justification being that the effects are

small and derive most of their contribution from glancing collisions. We may

then apply the "selection rules" for dipoie-dipole, dipole-quadrupole.and quad-

rupole-quadrupole interactions, namely that the'change in the principal rotational

quantum number is ±1 for a molecule with a dipole and ±2 for one with a quadru-

pole. The quadrupole terms lead to a number-of resonances additional to those

suggested for- dipolar force fields alone, as-well as to some additional "accidental"

2 3resonances for molecules whose'.moments of inertia differ by a factor of two. '

The effects of all three interactions prove' to be appreciable in the thermal con-

ductivity of-HCl, DC1, HF, DF, and their mixtures„ Quadrupole-quadrupole resonant

exchange is found to have a'negligible effect on the thermal conductivity of N,,,

02» and CO- - molecules with large moments of inertia - but is important for H_,

D_, and HD, a result consistent with some new experimental work „
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IIo EXCHANGE PROBABILITIES

Let 0., <j>., 9R and <j>R be the polar angles'specifying the orientations of

two linear molecules, A and B,.relative to the displacement vector R between

their centers of mass, and let y and 0 be dipole and quadrupole moments, re-

spectively. Then the dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole

interaction potentials are

"yAyB<D (V,H) = —f- C2cAc'B - SASBC), (i)
' R

17C2 ĉ ,2sŝ  - 16 SASBCACBC), (2)

with the shorthand notation

= cos6, C = cos6, c = cosA B,

= sn

The unperturbed wave functions for the rotational motion of linear molecules

are the spherical harmonics Y. (6,<j>), where j(j + l) h2/2I are the corresponding

energies, j the principal rotational quantum number, m its magnetic projection and
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I the moment of inertia.

In general, the introduction of angular-dependent- forces induces tran-

sitions in the rotational quantum numbers j., m., j , and m , and in a and m , the

orbital angular momentum quantum numbers describing- the relative motion. Since,

as will become' evident in the following sectionv "we are principally interested

in long-range collisions, i.e. , small' exchange-probabilities", an impact-parameter

calculation of the transition probabilities-is' acceptable. This enables us to

decouple the internal angular momenta" and the "orbital "angular momentum of the

trajectory,, The rotational states of ther two molecules may then be regarded as

undergoing transitions induced by the" time-dependent' force due to the variation

of the potentials of EqSo(l) - (3)"as"the relative trajectory is traced. The

calculation becomes particulary simple in" our' case of long-range resonant or near-

resonant collisions, because straight-line trajectories and" constant relative

velocities may be used. But even' in this' simplified model it is necessary in

general to solve a number of multiply-coupled' first-order differential equations ,

a formidable task without further approximation. The internal state of the

system may be specified by expanding the wave function in the set of unperturbed

wave functions of the two rotors,

m

a{i}(t) Y.) Y . ) , (4)

where {i} stands for the set of quantum numbers j , m , j , HL. Then the set of

equations to be.solved is



a,., (tO expC-iAEUkH/h), (5)
{k} ' {k}

where

0 (t)|{k}> =( YA(A)Y.D(B).|(p(t)jY ?(A)Y
7 \ JA JB T JA . J

m m' m'
D-sn\ I j^\ /'^.^I\rr»•/'A^^/1J/'T^^\ ffta^

AE{ik} = E 0;,ĵ  - E (JA,JB). (6b)

The transition probabilities are obtained from the solutions of Eqs(5), A

clue to an appropriate approximation when the transition probabilities are not small

is provided by. a consideration of the case where only two states, in exact resonance,

interact with each other. In this case, it is convenient .to replace our original
o

basis set by .the gerade and ungerade wave functions ,

,,-1/2 ^= 2

which do not mix during a collision; The interaction then splits the energy levels

by an amount

A E =| E - E I = 2|X|, (8a)
& > *"* & u
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where X is the solution to the secular equation

det A 6 ,6 . ± <
VA VB

/m m
( Y. (A)Y.
\J J

m!
^ - ,

B \
4 (B). =0, (8b)

It follows from this form that there is no splitting unless the"selection rules"

detailed below are satisfied. Equations (5) now take the form

: i -h a = ± X (t) a
g>u g,u»

or

(t)dt] (9)

The probability for the transition jm, j 'm 1 -*- j ' m ' , jm takes the well-known form ,

ex ft"1 / X(t)dt Cio)

The approximation .that we propose by anology with the foregoing is to

consider only two states at a time. For each pair of states, then Eqs.(5) become

exp(-iAE{ik}t/h) , (lla)

(lib)
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If at t = - o°, a,.-,(-«) = 1, the transition probability is given by

For AE T « h, where T is the measure of the duration of the collision,

the problem reduces to the so-called near resonance case, and we get Eq.(9) as

the solution to Eq.(11), with |x| given by the matrix element | xjilld?!{k}/> | ,

We must emphasize that |\\ does not have the meaning of an energy splitting as

in the exact resonance case and that the similarily between the two expressions

is due to the choice of approximation. Obviously this approximation neglects

effects due to the interaction of a given state with more than one other state.

Because no allowance is made for the reduction of"a probability amplitude by

transitions into competing states', this tends to overestimate the transition

probabilities, possibly leading to a total probability greater than unity for

transitions from one state to all others. This'error is partially counter

balanced by another; namely, a ladder mechanism whereby transitions are possible

between states not directly coupled. The larger the computed transition
Q

probabilities, the more serious are these errors . However, as will be obvious

in the following sections, we will be interested in evaluating accurate values

of POY primarily in regions.of large impact parameter where P < 1/4, thus
Qj\ v? j"v —̂

hopefully minimizing the shortcomings of the method„

In general, the number of "resonating" states, i.e., close-lying states

satisfying the condition AE« fi/T, is severely restricted. The vanishing of the

potential energy matrix elements for the multipole interactions considered here

restricts them even further. Thus, for linear polar molecules the only non-

vanishing off-diagonal terms occur for j' = j.±l> JA = jn+l; for linear
A. A. D D
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quadrupolar molecules, the selection rule is j! = JA±2S JR±2, and for dipole

quadrupole .interactions the selection rule is j ' = j.±l, j' = JD+ 2 and viceA A D O

versa. The resonance. condition further restricts the number of values of j.

and j to be considered to those obeying the relation
D

We shall say that two states are in exact resonance if the above conditions are

fulfilled with j' = jR and jp = j. (which requires IA = IR) , and that there is an
A D D A A. D

accidental resonance if the conditions .are otherwise fulfilled, or nearly ful-

filled,,

For I. = IR, the only exact resonances occur for dipole-dipole and quad-
A. D

rupole-^quadrupole interactions, for which j. = jn±l and j = j ± 2, respectively,

However, in dipole-quadrupole interactions an accidental resonance can occur if

j = 2 j -2 for excitation of the dipole or if j = 2 j + 3 for de-excitation.

The other case of interest here is In = 21., for which accidental exact resonances
D A.

are possible for dipoleTdipole interactions and some dipole-quadrupole inter-

actions ,, These are:

excitation»

= 2J.-1 for A de-excitation;

excitation,

jn = 4J.-3 for A de- excitation.
D A



In addition, accidental near resonances occur for y.0R interactions if

j =j ,j»l and for 0,0R interactions if JR~2ja,j.»l. These cases are all
D A. A. AD D A. A.

important for thermal conductivity which tends to weight large values of j„

The following matrix elements for the potentials of Eqs. (1) - (3) are

6b We write a for the coefficient ofexobtained by use of well-known formulas3

the factors - y y /R3,(3/4) 0.0 R-5, and(3/2)y ©gR'^in the matrix eigenvalue X:

dipole-dipole interaction (j' = j.+l,j' = JR-1)

Ife Mi
6 , 6
m I m. mR

m
R

(13)

Quadrupole-rquadrupole interaction (j' = j. + 2,j' = jR-2)

90
ex 8 , 6

m.

B B

(14)
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Dipole-quadrupole interactions.(j', = j + 1, j' = jR -2)

T • / I m' YT\ ml

+(1/4) ^,mA±l mB,mB±: (15)

9
With our simple approximation and the semiclassical impluse approximation ,

we can immediately integrate Eq0 (10) along a straight-line trajectory to obtain

(16)

"8 =ex

(17)

(18)

where the a are given by Eqs.(13)-(15), b is the impact parameter, and g is the
6X

relative velocity of the collision. These exchange probabilities depend on the

quantum numbers m and j as well as on b and g; we need the cross-sections obtained

by averaging over m. and m_ and integrating over b:

2ir

(2JA+1)(2JB+1)

Lf

I P^bdb.ex '
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TV V~ V~ A B TT_ i py
j » + k ) ( 2 j +1) Z_ . Z_ . tig 2 I ex

V-PA V-JB

— M X ^ *V Xfig N 'av

Similarly, we find that

The exchange cross -sections < Q ) depend not only on g, but on\ e x/ a v

j. and jn also through the coefficients / |a | y . Fortunately, (1) theA D \ e x / a v

dependence is very weak for large j and (2) a good approximation—at least for

linear dipole molecules --is obtained by taking only the first terms in Eqs .

(13) - (15) into account (i.e.., by considering only Am = 0 transitions). The

values so obtained are shown in Table I. An estimate of the error involved

can be obtained by comparing the dipole-dipole coefficient, 0.308, with

0.435, obtained by Sutton , who summed up the splittings, | A | , obtained by

London with his "unsharp" resonance theory of dipole interactions. For

use in subsequent calculations, we .adopt the accurate dipole coefficient,

-11-
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0.435. Because of the many approximations, we cannot expect the coefficients

to be more than.semi-quantitative. Some calculations by one of us (C. N.)

indicate that this is so and that.although the present formulae are suitable

for our purposes at present, it would be desirable to have a better approx-

imation.

III. ENERGY EXCHANGE AND THERMAL CONDUCTIVITY

Resonant exchange reactions seldom have much influence on macroscopic

properties, perhaps the best known case of any importance being their effect

on the thermal conductivity of dipolar gases . The preceding section .shows,

however, that resonant exchanges may occur for dipole-quadrupole and quad-

rupole-quadrupole interactions as well. Accordingly, in this section we

extend the earlier treatment of Mason and Monchick to quadrupole and dipole

interactions of linear molecules and to resonant exchanges between unlike

molecules in mixtures. For comparison with experiment we have chosen the

systems H2, N2, 02, C02, HC£, DC£, HF and DF, and the mixtures HC£-DC£ and

HF-DF.

A. PURE GASES

Since some of the effects are.rather small, the use of a linearized

formula for the heat conductivity might mask the effect of resonant exchanges,

We have.therefore, used the complete formula in which inelastic collisions

are included fully, and not just as a first-order correction. We indicate

the argument in some.detail first for a pure gas, since the procedure and

notation are the same for the much more complicated case of a mixture. For
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a pure gas, it has been shown that the exact result, within the framework

of the Wang Chang-Uhlenbeck-deBoer form of kinetic theory, is '

"V tr

2c.
. int

Cint

P"int 5c. ,int PP.
.~

-1

(22)

where X. is the thermal conductivity, n the viscosity, m the molecular mass,

c = 3k/2 the constant volume translational heat capacity per molecule,

c. the internal heat capacity per molecule, £ the collision number for

inelastic collisions other than resonant collisions, p the gas density, and

V. the diffusion coefficient for internal energy. The entire effect of

resonant collisions is contained in V. by way of a collision integral

defining V. ,

-I

^int
= (.8/3 c. (23)

where i and j refer to internal states before collison, k and £ to internal

states after collision, e. is the energy of the i-th internal state divided

by kT, y2 is the relative translational kinetic energy before collision

divided by kT and Yl2 the same after collision, and x is the angle of

deflection in the collision in center of mass coordinates. The collision
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integral \°'/ (not to be confused with the \° ' '/ already used) is, for
'av

a collision between species A and B,

oTT IT
sto r

\12 *—

-/ ILL ^ _L_ T
"l2 n^AB/ QA^B flu

(24)

where i and k are internal states of A and j and £ internal states of B,

F is any function of the dynamical variables before and after collision,

k£I.. is the differential scattering cross section into the solid angle

for the process i, j+k^.y-^1 > QA an^ Qt> are internal partition

functions

and y is the reduced mass of the colliding AB pair.

To show the effect of resonant exchange, we rewrite the collision

integral \'/ of Eq. (23), now denoted as 1^ for brevity, as

(ei-e)(ei-e..)(Y
2-YY'cosx)

^-e) (Ae i -Ae. ) (Y 2 -YY'cosx)
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(25)

where Ae.=e,-e. and Ae.=e -e.. For most collisions the last two terms
i K i 3 -L 3

represent Corrections for inelastic collisions which are presumably small

except in the case of resonant collisions (Ae. = -Ae.) which may occur out

to large values of the impact parameter. In that case, we may rewrite Eq.

(25) as

res

- 2<(e -i)Ae
res, (26)

where P is the probability of resonant exchange and characteristically
6 J\

is a rapidly oscillating function .of b (with an average value of 1/2) for all

b less than some critical value b , and a monotonically vanishing function of

b for b>b . The term ( I i ) d - represents the collision integral for in-ternal

energy diffusion without resonant exchange but including all other collisions,
Jfc

and is of magnitude (c. /k) (kT/2Try)ira,2 where, a is an ordinary gas-kinetic

collision diameter such that x~0 for b>.0. The second term on the right is of
\fi 0

magnitude • ( c . / k ) (kT/2Try) Eaz f , where f is the fraction of collisions
111 L jTGS

for which the two molecules are in resonance, and the third term is of mag-
1/2

nitude (c. /k) (kT/2iry) frb 2 f . Since f «1, the second term is
111 L C. rGS 1/cS

negligible, but because b »a, the third term is not and contributes a
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significant correction term to P. . The expression thus becomes

(27)
res

For dipole-dipole and quadrupole-quadrupole resonances e , = e . and £,,=£. and
K j -c !

Eq. (27) becomes Eq. (70) of reference 1. This is no longer true if we

admit dipole-quadrupole resonances and thus we are forced to use the more

general form, Eq, (27) .

Assuming that.the scattering pattern is almost independent of the

initial or final internal states except for a scaling factor consisting of

a total transition probability, the so-called independent scattering pattern

approximation, we can carry out the averaging over b, m., and m in the

/ \
correction term of Eq. (27), converting P to ̂  Q )> of Eq. (19). We can

6X \ cX /\ / av
now sum over the principal quantum numbers of all pairs of resonant states

and integrate over all velocities, as previously shown in detail for dipole-

dipole interactions . After substituting foi

the final results for V. . may be written asint

dipole interactions . After substituting for ̂  Q ^ from Eqs. (19 - 21),
C J\. / av

. - ( -0. } ( 1 + AW
 + A^0

 + A 0 0 ' (28)int I int /,. \ ex ex ex/\ / dir x

8\-l

V >

where ( V. ) comes from (Ii),. and the A terms come from the resonant
V int /,. v LJdit, exdir

correction term of Eq. (27) and are given by

(29)
"ex ° 16 YW \~T~' ' — ' ~"*• W \ **** V ^ A / \41 / W U U j . -dir
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90 _ 60 2l7r j Am r o 0 2 < a
— - ~ex

b i odir

V9,^\
_ _ / — \\D f x-. *7 \ 1/V W/3/ U \ V? / - V7A3 \ I d I y^ *- — i NK - *VB §(rrww(̂ )(%) j; (..I?- • (

dir

in which 0 = fi2/2kl is the characteristic rotational temperature and

(1 1) *
fi,. ' is the reduced collision integral for diffusion without resonant

exchange. The coefficients g are the corrections to be applied for replacing

quantum summations by integrations, and are

2 n, -2n
26rot/T

n=l

- /k v¥7 \ T"int/k -s ̂  ^ i

to

x V C2n-l)(2n+l)2(2n*3)e-2(n2+n+1)erot /T , (33)
' '

2 /
50 / 5 9rot

(cint/k) 3 V,

* ) n(n+l)(2n*l)2e-(5n2+5n+2)erot/T . (34)
L I

n=l
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Some values of these coefficients are given in Table II and shown in Fig, !„

For symmetric linear molecules the values of A^y and A^~ are zero of courseex ex

because y = Q, A"" is not zero and must be modified for the existence of
t? J\.

ortho and para forms„ This is taken into account by summing only over the

even or the odd rotational levels in g~"; these are also displayed in Table

II and Fig_ 1=

In many cases the quantum effects are small and the following asymptotic

formulae suffice:

(1- - * • • • • ) , C35)

(1- * ....). (36)

(37)

The low temperature limiting forms of these coefficients are

rot

'"feri-Tskl (e^-)*' ' • ' ^\ / N ' \ rot

(Total) - _) e~4erot/T + . . . . . C40)
rot /

......
rot /
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To give an idea of the magnitude of the quadrupole-quadrupole ex-

00change effect, we show in Table III the calculated values of A for N2,
C A

02, C02, and H2 at 300°K. The contribution is negligible for the first three,

but not fox H2 which even shows a distinct ortho-para effect. The reason for

the difference is the low moment of inertia of H2, which leads to a large

spacing of the rotational energy levels and thus to a different energy distri-

bution of the ortho and para forms at low temperatures.

A more extended calculation of A " as a function of temperature is

shown in Fig. 2 for H2, D2, and HD0 The parameters used are listed in Table

IV. The effect on V. amounts to roughly 30% except at very low and very

high temperatures. Since the rotational degrees of freedom in H2 carry at

most about 25% of the total energy flux, the effect of quadrupole resonant

exchange amounts to only 7% of the total thermal conductivity of H2. Thus

the effect is not large, but.still capable of experimental detection, Harris

used a differential method to measure the deviation of thermal conductivity

of para-hydrogen at 77°K and 311°K from the theoretical formula which neglects

resonance corrections. The results are shown in Fig. 2 and, within mutual

errors, are consistent with the effect predicted by the theoretical formulae

developed here and in the previous section. Unfortunately, the situation is

not entirely unambiguous because of possible surface accommodation effects

12in the experiments. Recent results on the thermal conductivity difference

of o-D2 and n-D2 near 20°K are inconclusive: using the formulae of the next

subsection and assuming that the diffusion cross sections for o-o , p-p , and

o-p D2 collisions are equal, it is possible to arrive at a theoretical
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12formula like that of Uebelhack, et_ al_,, corrected for resonant collisions.

The theoretical difference, like theirs, is too small, and, with resonant

corrections, has an even smaller temperature dependence. The rest of the

difference may probably be attributed to small differences in the collision

cross sections of the ortho and para forms of D2. These latter effects-less

than 0.1% - are masked, however, at higher temperatures, and the theoretical

differences in ortho and para forms - ^ 1% in H£ at 300°K and at 200°K in

D2- should be observable.

The relative importance of dipole^dipole, quadrupole-quadrupole, and

dipole-quadrupole resonant exchange is shown in Table V for HF, DF, HC£, and

VCt at the temperatures at which Baker and Brokaw ' made their measurements;

the parameters used are listed in Table VI. It is apparent that the dipole-

dipole exchange is the most important, but that the other contributions are

not entirely negligible; that is, although the 6-0 and y-0 exchanges con-

tribute only a few percent to the overall effect on the thermal conductivity,

this can be a significant contribution for some purposes. For instance, if

one wishes to use thermal conductivity measurements and Eq. (22) to calculate

collision numbers for inelastic collisions, it is important to have accurate

values of P. . This is illustrated by the last two columns of Table V, which

show rotational collision numbers calculated from the conductivity measurements

of Baker and Brokaw. The effect of including quadrupole-quadrupole and dipole-

quadrupole resonant exchange is to increase the rotational collision numbers,

t, ., to more physically reasonable values. Incidentally, if all resonant

exchange is neglected, the absurd result of negative 5 is obtained. The

values of £ for HC£ may be compared with the value 5 -7 collisions at
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130°C, obtained from acoustic absorption measurements . However, our values

for t, should not be taken too literally, because we have not included any

correction for the effect of inelastic collisions on V. , In particular,

14the calculations of Sandier for the models of rigid loaded spheres and

rigid sphero- cylinders suggest that inelastic collisions (other than resonant

collisions) may affect V. by a few percent, increasing V. for £ £ 2,8i n u

and decreasing it for £ £ 2 _ 8 o If this trend holds for the polar molecules

of label V, the values of £ in the last column of the table would be de-

creased slightly for HF, DF and HC1, and increased appreciably for DC1, a

result which appears physically plausible,,

B, MIXTURES

The complete expression for the thermal conductivity of a gas mixture

within the framework of the Wang Chang-Uhlenbeck-de Boer theory is still very

complicated ' . But if we regard it as merely an interpolation formula

between the conductivities of the pure components, always forcing the expression

to give the correct pure component results, a simple but useful approximation

can be obtained by formally neglecting all inelastic collision terms in the

complete expression . The result is equivalent to the Hirschfelder-Eucken

expression , which reads, for a binary mixture of gases A and B,

(HE) = A . (mon)
^ J ^ J .. . . x V

Aint,A -A Bint,B
A Aint jB
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where A „ (mon) , A . ( m o n ) , and A (mon) are the conductivities of the mixture,
f\ D

component A and component B calculated as if the gases were monatomic, ' e.g.,

AA(mon) = f c^ jj*- , etc., (43)
A

A. and AR are the true conductivities of pure component A and B, x. and XR are

their mole fractions, and m is the molecular mass. The diffusion coefficients
A.

are now of two types: one for diffusion through molecules of the same type,

namely, V and V . • which are given by Eq. (23), and one for diffusion
A.1T1 1 ̂  A. Din t $ D

through molecules of different type. These are given by

/ Yl \ AB

^ ' C44)

(45)
AB

where n is the total number density of the mixture,, Analogous expressions hold

R A
for P . and 1% , obtained by interchange of subscripts,,DintyA

The corrections to I2 for accidentally resonant exchange are obtained

from Eq0 (45) by arguments like those used for 1^; the results are

(46a)
,res
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T ^I2 ~
BA

dir AB,res
(46b)

The factor of 2 in Ij is missing from these correction terms because of the

distinguishability of the colliding pair; this is related to the fact that

A. The evaluation of the correction

terms proceeds as for pure gases, and, with an easy extension of the previous

notation, leads to the expressions

V.. . .is not the limit of P.. . D as BAint.A —— Aint,B

VAint,B Aint,B dir

,00
AB

A,y0
AAB AB

(47a)

PBint,A Bint sA dir
BA BA

y0 0y
A B A + A BA (47b)

For ID = 21., only the correction terms A^T, A » . , A"^ , and A^" correspond to exact
o A A D B A A D r > A

resonances; the others are only near resonances, although they have been treated

as exact: this entails counting half-integral values of j0 The order of sub-

scripts on the A's corresponds to the order on the internal diffusion co-

efficient, and the order of the superscripts denotes the order of the transition.

That is, A " is the correction to P.. R for a dipole transition on A and aAD AlTlc jD

quadrupole transition on B, whereas AA , is the correction for a quadrupole

transition on A and a dipole transition on B0 'The detailed expressions for the

A's are given in an appendix.

The relative importance of the exchange corrections for unlike collisions

is illustrated in Table VII for HF-DF and HC£-DC£ collisions at the temperatures
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3 4for which thermal conductivity measurements have been made ' , These should

be compared with the corresponding values for like collisions in Table V» It

is again apparent that the dipole-dipole exchange correction is the most im-

portant, but that the others may not be negligible. The dipole-dipole and

quadrupole-quadrupole exchange corrections for unlike collisions are always

smaller than the corresponding corrections for like collisions, but the reverse

is true for some of the dipole-quadrupole corrections. However, the total exchange

corrections are generally smaller for unlike than for like collisions„

In attempting to account for their results on the thermal conductivity

3 4of equimolar HX+DX mixtures, Baker and Brokaw * assumed the following relations.

Note a factor of two difference in the definition of our resonant corrections

and theirs„

_
2 HX-DX ~ HX-HX'

C-HX = ASx-DX°

Comparison of Tables V and VII shows that these relations are followed only very

roughly. From the expressions in the appendix we find instead the following re-

lations holding in the classical limit (with IQX = 2IHX, mDX = m yQX = y

9DX

1 APy - 6/ Ayy

2 HX-DX ~ 9 HX-HX'
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= .
2 DX-HX 27 DX-DX

- I AHX-DX

The same relations hold for the quadrupole-quadrupole exchange corrections,

and analogous relations among the various dipole-quadrupole exchange corrections,

3 4Following the procedure of Baker and Brokaw ' we have displayed the

calculated and experimental results in Figs« 3 and 4 as the deviations of the

thermal conductivities of equimolar HX+DX mixtures from the linear average of

the pure HX and DX components,, Three calculated curves are shown as broken

curves: one with A.R set equal to zero, one including only the A.R corresponding

to exact resonances, and one including both exact and near resonances. It is

evident that the inclusion of unlike exchange in the Hirschfelder-Eucken calcu-

lation reduces the discrepancy with experiment, but does not completely

eliminate it. One way of improving the agreement would be to multiply all the

unlike resonant corrections by 2: X „ (HE) would now reduce to \. as A -* B. but3 mix A

has no other theoretical justification.,

The complete Wang Chang-Uhlenbeck-deBoer expression for the mixture

thermal conductivity takes the form

A . = Atr + Xint , (50)mix mix mix ' *• J

where both the translational and internal contributions are given by ratios of

1115 rs r 's 'complicated determinants * „ The elements L } of the determinants areqq'
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linear combinations of collision integrals of the form of Eq. (24) „ These

have been expressed in reference 11 in terms of various relaxation times,

diffusion coefficients and other experimental quantities, subject to several

approximations, some of which must be revised if resonant exchange collisions

are to be taken into account properly. Briefly, the most important approxi-

mation is the neglect of the so-called complex collisions, ioCo, collisions

that involve more than one quantum jump; in particular, collisions in which

the internal states of both colliding molecules change are neglected. Clearly

this approximation would discard resonant collisions and so must be used with

care. It is safe to neglect complex collisions in the expressions for the
01 ,01 t r

elements L ,, which dominate the behavior of A . , since they explicitlyc[C[ nix x

involve only the inelastic collisions other than resonant collisions. The same
10,01 01,10

is true of the elements L and L . The second approximation assumesqqt qqi ™

that the angular scattering distribution is the same in all channels except

for a scaling factor, the total transition probability,, This will be called

the independent scattering pattern assumption. This permits a number of terms
01,10 10,01

to be dropped from the elements L and L . Thermal diffusion measure-™ qq' qqt

ments in ortho and para hydrogen at low temperatures indicate that these terms

17are indeed small although by no means negligible in all circumstances , The
10,10 10 ,01

result of these considerations is to leave the expressions for L , L ,F qqi ' qqi '
01,10

and L given in reference 11 unchanged.qq1

The foregoing approximations must be applied more carefully to the
01 01 int

elements L ' „ which dominate the behavior of X . . When this is done,qqi mix '

a new term, something like a rotational relaxation number but due only to

= 26-



01 01
resonant collisions, appears in the diagonal elements L J „ In the

notation of reference 11, for the two component case, q=A,B,

01,01 01 ,01

AA = LAA

01 ,01

*4V • (51)

01 01

V 4kT

A,int

^Aint.A C52a)

A , 0 1 . 0 1 -8kA L . . = —7—
AA TT/CAint kVAA

6^
5

m T4*
A AB

3/2

Arot
r r ^
Arot Brot

A B m AB \ "AB AB

(52b)

01 .01
where A?D is the ratio of collision integrals defined in reference 110 LDD.AD DD

is obtained by interchanging subscripts. The new term £.R arises from the

following collision integral

1/2 1/2
CArotCBrot ,

^ , , .Ai Bj ex AB,res AB

(53)

where n. is a fictitious viscosity defined in terms of a collision integral.B

Note that ?
r\,

AB , a symmetry that is not true for the usual collision numbers

'AB° itself may be separated into the contributions from the different types
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of exchange interactions as follows:

M1U 0,00

^AB CAB

+

'AB

(54)

where £._ = £ R . a The evaluation of these collision integrals is quite

similar to that of the analogous A°R and leads to quite similar expressions

which are given in the appendix„
a,,

The new term £,R also appears in the off-diagonal elements !.
01 01

'AB

01,01

'AB
and

ABL ' , as does a new type of diffusion collision integral, 13 :

. 0 1 , 0 1 48 *f

AB
AB c cArot Brot

517 CAintCBintnPAB
AB

6£ _AjnyB
3 CAint CBintT

AB
(55)

where

Ai A (56)

Neglect of complex collisions and the assumption of independent scattering
01,01

patterns reduces L.R , B^A, to zero. We will retain these assumptions for
r\D

all collisions other than resonant collisions: their contribution will then
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AB
be nilo The contribution of resonant collisions to 13 may then be evaluated

according to arguments like those used for 1} and 12, and we find

£ -e E -E YZP > A^B T571w & o &> . ) | ^ A ° V A I IY 1 / • *VT •* o I *J / JAi A MAi A k j Y ex/ABjres '

These corrections are the same as the corrections occurring in Eqs» (46) for

12 and have already been evaluated„ The presence of these correction terms in
01,01

the off-diagonal elements of L makes up for the missing factor of 2 in the

correction terms of I2: the mixture formulae will now reduce properly to the

single gas conductivity in the limit of a mixture of a gas with itself. The

determinant element of Eq» (35) may now be approximated by

1/2 1J2
. Q l , ° l 4xAXB / CAint A 12 * CAintCBintLAB ." • '^r~c;;>p.n v ~T~ AB " ^ AB ^A/B Aint Bint AB \ i;

A.D

where A. is the same group of corrections that appear in Eq, (47a) and in the

appendiXo
f\j

Values of £.R for multipole exchanges in HX-DX collisions are given in
•A.D

Table VIII at the temperatures for which thermal conductivities have been

measured. They are similar in magnitude to the usual collision numbers for like

collisions given in Table V. To obtain values for ?.R, the usual collision

numbers for unlike collisions, we have assumed that the structure of the target
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molecule is relatively unimportant and have taken

' CBA " ?BB

The values of £.. and £ in Table V assure that the conductivities of the pure
AA. DD

components will be reproduced correctly.

The results are shown in Figs. 3 and 4 as the unbroken lines. Three

curves have been calculated; no unlike resonances, exact unlike resonances

counted, and both exact and near resonances counted for unlike collisions.

It is apparent that the effect of resonant exchange is appreciably greater in

the complete kinetic theory expression than in the Hirschfelder-Eucken approxi-

mation. The results without unlike exchange are clearly much too high; the

effect of including unlike exchange is in the right direction and of the

correct magnitude. There remain, however, small discrepancies of detail. Thus

the calculated results for HF+DF are always slightly too high, even with near

resonance included. But for this system the resonant corrections are so large

(see Tables V and VII) that it seems likely that the simplified two-state

theory of Section II is inadequate. Inclusion of near-resonant exchange

collisions for HC£+DC£ is sufficient to lower the calculated point below the

experimental points, and indeed to change the sign of the deviation from

linearity. This might indicate that near-resonant exchange should not be

weighted as heavily as exact resonance, but the theory of Section II is much too

simple to deal with a question of that sort. The effect of omitting the new

^term, £, is very small (less than 10% of the total deviation from the average)
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and in the positive direction,, This was to be expected since Ij • and 1L.

cancel in the limit of a gas with itself and HC£+DC£ and HF+DF are, after all,

isotopic mixtures. Besides the numerical discrepancies, the predicted temp-

erature dependence is not quite right. But again, in view of the many

approximations involved, the details should probably not be taken too seriously,

except to indicate that resonant effects are evident in HX+DX mixtures, and

that marked improvement is made by including multipole interaction effects

higher than dipole-dipole0

IV. DISCUSSION

We believe that the present results show the importance of including

other multipole interactions as well as dipole-dipole interactions in calculations

of the thermal conductivity of gases and gas mixtures containing molecules of

low moments of inertia. Such interactions seem capable of accounting for the

anomalies observed in HF+DF and HC£+DC£ mixtures. However, the numerical details

should not be taken too literally, because many approximations have been made.

In particular, the whole theory of resonant exchange used here is based on a

two-state approximation, and the integrals occurring have been computed by an

impact parameter approximation. Furthermore, the numerical values of the exchange

coefficients, <Cja \ ̂> , have been calculated roughly (Table I). In addition
^ ex av '

to these approximations in the collision theory, approximations have also been

made in the kinetic theory. Complex collisions have been neglected, and the

independent scattering pattern approximation has been made in many of the
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14matrix elements„ The effect of inelastic collisions on P. . has beenint
18neglected and spin polarization has been ignored,, The values of £. and

CR. have been estimated only roughly via Eq0 C59) . These are all thought to be
D i\

small effects, but the remaining discrepancies with experiment are now in the

realm of small effects. We may thus close on an optimistic note—for cal-

culations of thermal conductivity, the present theory is adequate to approxi-

mately 1 or 2%»

•32-



APPENDIX

The unlike exchange corrections for the internal-energy diffusion

coefficients are as follows. For exact resonance,

yy _ yy 3?r2 ( . yAB ) / Arot A 2 / yAyB V\ '"ex'/av , (Al)
" A T » SAI-* n I "*Tl~"rn" ( \ rn / \ *• .

yy 2_ yy / UK , uH , fA21
BA 3 AB \ gBA /gAD ' ' l J

. u
0V _ 6y 190/ 3 \ ( ^_\ ( yAB ) / UArot
A B "gAB 243V T r / l l 8 y \ k T / V T

» l ) '

AVi0 1 .Gy / yG / Gy \ ,. ...
ABA = - 19 AAB gBA /gAB ) ' (A4)

where the semiclassical asymptotic expressions for the g coefficients are

yy -26. J S T f , 1 Arot ) , . _ .
S ^ = p Avnt I ^ —— +« o a I (A1^

AB V 9 T / J l-Ai5j
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S B A = e Arot ^-f-T-*"-; ' M

For near resonance,

Q]i -176. ./12T ( , 67
SAB = e Arot I x"38 T

.66 60 ? T T / 1 } -( ',
AAB = *AB2-U J rl 4

.66 2 .00 / 66 / 66
A B A = 3 A A B i g B A / g A B

-34-

/ e \
-136. J12T( T 19 Arot | _ . 0 _Arot' i -—-—_+. . . , (A8)

(A9)



ik. 2/3 1/3 3/2

AyG _ pG 4 0 / 2 \/V \ /2yAB V9Arot \
AAB ~ gAB 9"l TT J I T8 I \~KTJ \ T /

where the semiclassical expressions for the g coefficients are

-35-
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.0y 3 AyG Gy / yQ ] r A i T \
A B A = 8 A A B B A / g A B • (A12)

CA13)

(A14)

(A15)

CA16)



The resonant rotational relaxation collision numbers are closely

related to the corresponding A.- ,

1 _ 1 _ STT I yyu yy fA171
-Mjy ~ 'vyy ~ 36A* ' AB1 AB '
C A T , ^ r ,A AB

STT i . e G i , . 00 (Alg)

^00 42A*A D ' AB1 AB
CBA AB

STT I y G u y G
32A*T | A AB | h AB

1 _ 5TT |Ae y |h9 y

•-VV0 ~ 38A* ' AB1 AB

The h coefficients are quantum corrections; their semiclassical expressions

are

(A21)
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90 _ Arot 6Arot
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TABLE I

Average Values of Resonant Exchange Coefficients,
for use in Eqs. (19) - (21)

Am=0 (only) Corrected

aexl/av °:308 °'435

a e x l ' > 1.308 1.308

av 0.514 0.514
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^^ ^M CO ^^ ^^ ^O tO IO ^D t̂  t̂  t̂  t̂  00 00 00 CO 00 ^^ ^o O^ ^^ O^ ̂ ^ ^^

O O O O O O O O O O O O O O O O O O O O O O O O r H

es . . _ _ _
-p O « D O i C n t > C O ( N r H O O O O O O C O O O O O O O C O O O
o o t > o o o o o o o o o o o o o o o o o o o o o o o
•p

^̂  ^̂  i™H i~H rH i~H rH nH rH rH rH rH rH rH ^H nH r~H rH rM nH r~H rH f"H ^H rH

o o o o o r H o r H ^ c M c o c o m ^ o i o o o o o o o o o o- a _ _ - - - -

o
O O O O O O O O O O O O O O O r H r H i — I i—I i—IrHrHrHi—IrH

O

O

G
0)

<u
O O O O O r H i — I r H r H r H r - H

•p i n o i n o m o m
o

. . . . . . . . . . . o . . . » = . . p

<N

a>K>
i



TABLE III

Effect of Resonant Quadrupole-Quadrupole Energy
Exchange on Thermal Conductivity at 300°K

Gas 1026 0 a rot e/k
esu °K °K

N 1.52 2.86 91. 5b

£t

02 0.39 2.07 113b

CO2 4.3 0.56 190b

o-H2 0.662 85.4 37 . 2C

p-H_ 0.662 85.4 37.2°
£t

a
o
A

3.681b

3.433b

3.996b

2.97C

2.97C

c
0.0096

0.0017

0.0018

0.278

0.228

aD.E. Stogryn and A.P. Stogryn, Mol. Phys. 11, 371 (1966)

Reference 6

CD.E. Diller and E.A. Mason, J. Chem. Phys. 44, 2604 (1966)

-40-



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
SILVER SPRING. MARYLAND

TABLE IV

Parameters Used in the Calculations for Figure 2

1026 (
Gas

esu

Grot

°K

H2 0.662 85.4

DQ 0.649 42.7
£i

HD 0.642 64.1

n be/k

°K

37.2

35.0

36.5

ba
o
O
A

2.97

2.976

2.96

aD.E. Stogryn and A.P. Stogryn, Mol. Phys. 11, 371 (1966)

bD,,E. Diller and E.A. Mason, J. Chem. Phys. 44, 2604 (1966)
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TABLE V

Effect of Resonant Multipole-Multipole Energy
Exchange on the Thermal Conductivity

of Polar Diatomic Gases

Gas

HF

DF

HCA

DC4

T
°K

373.8
422.3

373.8
422.3

300.1
328.5
374.8
423.1
471.4

300.1
328.5
374.8
423.1
471.4

V.\i

2.209
1.855

0.903
0.767

0.456
0.400
0.329
0.274
0.232

0.176
0.154
0.126
0.105
0.089

4.x
09

0.262
0.236

0.116
0.102

0.199
0.180
0.156
0.135
0.119

0.081
0.072
0.062
0.054
0.047

H0

0.193
0.171

0.082
0.072

0.094
0.085
0.072
0.061
0.053

0.037
0.034
0.028
0.024
0.020

Calc.

p.(i only

8.1
7.8

3.0
2.6

4.1
2.7
1.8
1.4
1.2

0.8
0.5
0.2
0.1
0.1

rot
(ifi+pt® + 0©

10.7
10.7

4.2
3.8

13.3
7.4
4.8
3.7
3.5

2.2
1.5
1.0
0.8
0.8
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TABLE VI

Parameters Used in the Calculations for Table V

Gas

HF

DF

HC1

DC1

10 18

esi

ul io26
 f

i esu
> erot

°K

Io83a 2.6C 30.16a

l,837a 2.6° 15.85a

1.081b 3.8C 15.24b

I0085b 3.8C 7,84b

e/k

°K

400 d

400d

328e

328e

a

A

2.394d

2.394d

3.36e

3.36e

max

2.0d

2.0d

0.34e

0.34e

o

Reference 4

Reference 3

CD.E. Stogryn and A.P. Stogryn, Mol. Phys. 11, 371 (1966)

Private communication from Dr. Roger Svehla

eL. Monchick and E.A_ Mason, J. Chem. Phys. 35, 1676 (1961)
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TABLE VII

Multipole-Multipole Energy Exchange Corrections for
Unlike Collisions Between HX and DX.

Comparison Should be Made with the Corrections
for Like Collisions in Table V

I A I A
T 2 TIX-DX 2 HDX-HX

Mixture °K fifi 99 Me 0H HH 00 M-0 Q V

HF - DF 373.8 0.612 0.078 0.293 -0.095. 0.206 .0.025 :0.001 0.058
422.3 0.521 0.069 0.257 -0.085 0.175 0.023 0.001 0.051

HC1-DC1 300.1 0.126 0.058 0.140-0.048 0.042 0.018 0.001 0.027
328.5 0.110 0,051 0.126 -0.043 0.037 0.017 0.001 0.025
374.8 0.090 0.044 0.106 -0.037 0.030 0.014 0.000 0.020
423.1 0.075 0.038 0.090 -0.031 0.025 0.013 0.000 0.017
471.4 0.064 0.034 0.079 -0.027 0.021 0.011 0.000 0.014
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TABLE VIII

Rotational Collision Numbers for Multipole-Multipole
Energy Exchange in HX-DX Collisions

T
Mixture

°K

HF-DF 373.8 .1.4
422.3 1.6

HC1-DC1 300.1 4.2
328.5 4.8
374.5 5.7
423.1 6.7
471.4 7.7
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FIGURE CAPTIONS

Fig. 1. Quantum correction factors g , g , and g" for resonant
exchange of rotational energy, as appearing in Eqs= (29) -

(31), The dashed curves for quadrupole-quadrupole ex-
change apply to symmetric molecules, and refer to summations

over even or odd rotational energy levels.

Fig. 2, Resonant quadrupole-quadrupole correction to V. for hydrogen
isotopes. The experimental points refer to p-H2,

Fig. 3. Deviation of the thermal conductivities of equimolar HF+DF mix-

tures from a linear average. Solid curves are the present
theory and dashed curves: are the Hirschfelder-Eucken approxi-

mation. In each case the upper curve is obtained with all unlike
exchange corrections A._ set to zero, the next lower curve includes

only the A.n for exact resonances, and the lowest curve includes
AD

both exact and near resonances.

Fig. 4. Same as Fig. 3, for equimolar HC£+DC£ mixtures.
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